Properties

Label 1.7_13.6t1.5
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$91= 7 \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 21 x^{4} - 22 x^{3} + 58 x^{2} + 23 x + 155 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 39 a + 101 + \left(50 a + 31\right)\cdot 103 + \left(76 a + 27\right)\cdot 103^{2} + \left(51 a + 63\right)\cdot 103^{3} + \left(29 a + 69\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 a + 37 + \left(52 a + 43\right)\cdot 103 + \left(26 a + 53\right)\cdot 103^{2} + \left(51 a + 38\right)\cdot 103^{3} + \left(73 a + 47\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 98 a + 27 + \left(51 a + 56\right)\cdot 103 + \left(11 a + 87\right)\cdot 103^{2} + \left(28 a + 31\right)\cdot 103^{3} + \left(59 a + 101\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 100 + \left(53 a + 69\right)\cdot 103 + \left(99 a + 23\right)\cdot 103^{2} + \left(66 a + 28\right)\cdot 103^{3} + \left(44 a + 93\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 22 + \left(51 a + 10\right)\cdot 103 + \left(91 a + 47\right)\cdot 103^{2} + \left(74 a + 48\right)\cdot 103^{3} + \left(43 a + 29\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 77 a + 23 + \left(49 a + 97\right)\cdot 103 + \left(3 a + 69\right)\cdot 103^{2} + \left(36 a + 98\right)\cdot 103^{3} + \left(58 a + 70\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,3,4,2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,2)(3,5)(4,6)$ $-1$ $-1$
$1$ $3$ $(1,4,5)(2,6,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,5,4)(2,3,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,3,4,2,5,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,6,5,2,4,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.