Properties

Label 1.7_13.6t1.4
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$91= 7 \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 22 x^{4} - 22 x^{3} + 148 x^{2} - 148 x + 337 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 63 a + 53 + \left(39 a + 56\right)\cdot 71 + \left(12 a + 68\right)\cdot 71^{2} + \left(35 a + 49\right)\cdot 71^{3} + \left(31 a + 44\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 61 a + 8 + \left(a + 41\right)\cdot 71 + \left(54 a + 61\right)\cdot 71^{2} + \left(57 a + 44\right)\cdot 71^{3} + \left(65 a + 51\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 59 + \left(69 a + 54\right)\cdot 71 + \left(16 a + 25\right)\cdot 71^{2} + \left(13 a + 35\right)\cdot 71^{3} + \left(5 a + 54\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 40 a + 24 + \left(26 a + 22\right)\cdot 71 + \left(25 a + 60\right)\cdot 71^{2} + \left(65 a + 5\right)\cdot 71^{3} + \left(7 a + 55\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 37 + \left(31 a + 2\right)\cdot 71 + \left(58 a + 54\right)\cdot 71^{2} + \left(35 a + 36\right)\cdot 71^{3} + \left(39 a + 1\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 a + 33 + \left(44 a + 35\right)\cdot 71 + \left(45 a + 13\right)\cdot 71^{2} + \left(5 a + 40\right)\cdot 71^{3} + \left(63 a + 5\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,3,5,4,2)$
$(1,5)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,5)(2,3)(4,6)$ $-1$ $-1$
$1$ $3$ $(1,3,4)(2,6,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,4,3)(2,5,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,6,3,5,4,2)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,2,4,5,3,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.