Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ |
$=$ |
$ 4\cdot 29 + 18\cdot 29^{2} + 22\cdot 29^{3} + 23\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
$r_{ 2 }$ |
$=$ |
$ 10 + 5\cdot 29 + 11\cdot 29^{2} + 15\cdot 29^{3} + 16\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
$r_{ 3 }$ |
$=$ |
$ 21 + 16\cdot 29 + 21\cdot 29^{2} + 23\cdot 29^{3} + 22\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
$r_{ 4 }$ |
$=$ |
$ 28 + 2\cdot 29 + 7\cdot 29^{2} + 25\cdot 29^{3} + 23\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
Cycle notation |
$(1,4,2,3)$ |
$(1,2)(3,4)$ |
Character values on conjugacy classes
Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,2)(3,4)$ | $-1$ |
$1$ | $4$ | $(1,4,2,3)$ | $\zeta_{4}$ |
$1$ | $4$ | $(1,3,2,4)$ | $-\zeta_{4}$ |
The blue line marks the conjugacy class containing complex conjugation.