Properties

Label 1.7_127.6t1.1
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 127 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$889= 7 \cdot 127 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 91 x^{4} - 61 x^{3} + 3045 x^{2} - 961 x + 36959 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 22 + \left(17 a + 4\right)\cdot 29 + \left(5 a + 8\right)\cdot 29^{2} + \left(5 a + 5\right)\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 a + \left(11 a + 27\right)\cdot 29 + \left(23 a + 4\right)\cdot 29^{2} + \left(23 a + 24\right)\cdot 29^{3} + \left(28 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 8 + \left(17 a + 8\right)\cdot 29 + \left(5 a + 23\right)\cdot 29^{2} + \left(5 a + 3\right)\cdot 29^{3} + 13\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 26 + \left(17 a + 16\right)\cdot 29 + \left(5 a + 10\right)\cdot 29^{2} + \left(5 a + 18\right)\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 19 a + 18 + \left(11 a + 6\right)\cdot 29 + \left(23 a + 21\right)\cdot 29^{2} + \left(23 a + 9\right)\cdot 29^{3} + \left(28 a + 14\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 14 + \left(11 a + 23\right)\cdot 29 + \left(23 a + 18\right)\cdot 29^{2} + \left(23 a + 25\right)\cdot 29^{3} + \left(28 a + 13\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4,6,3,5)$
$(1,6)(2,3)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,6)(2,3)(4,5)$ $-1$ $-1$
$1$ $3$ $(1,4,3)(2,6,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,4)(2,5,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,4,6,3,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,5,3,6,4,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.