Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 25 + 35\cdot 43 + 11\cdot 43^{2} + 29\cdot 43^{3} + 11\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 30 + 5\cdot 43 + 29\cdot 43^{2} + 37\cdot 43^{3} + 12\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 34 + 4\cdot 43 + 40\cdot 43^{2} + 23\cdot 43^{3} + 26\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 41 + 39\cdot 43 + 4\cdot 43^{2} + 38\cdot 43^{3} + 34\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(1,3,2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $1$ | $4$ | $(1,3,2,4)$ | $-\zeta_{4}$ |
| $1$ | $4$ | $(1,4,2,3)$ | $\zeta_{4}$ |
The blue line marks the conjugacy class containing complex conjugation.