Properties

Label 1.7_113.6t1.1
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 113 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$791= 7 \cdot 113 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 89 x^{4} + 59 x^{3} + 2385 x^{2} - 841 x - 18901 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 24 + 2 a\cdot 29 + \left(22 a + 3\right)\cdot 29^{2} + \left(16 a + 28\right)\cdot 29^{3} + \left(13 a + 4\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 12 + \left(26 a + 27\right)\cdot 29 + \left(6 a + 23\right)\cdot 29^{2} + \left(12 a + 2\right)\cdot 29^{3} + \left(15 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 10 + \left(2 a + 4\right)\cdot 29 + \left(22 a + 18\right)\cdot 29^{2} + \left(16 a + 26\right)\cdot 29^{3} + \left(13 a + 28\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 16 + \left(26 a + 10\right)\cdot 29 + \left(6 a + 26\right)\cdot 29^{2} + \left(12 a + 15\right)\cdot 29^{3} + \left(15 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 27 + \left(26 a + 1\right)\cdot 29 + \left(6 a + 10\right)\cdot 29^{2} + \left(12 a + 1\right)\cdot 29^{3} + \left(15 a + 22\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 a + 28 + \left(2 a + 12\right)\cdot 29 + \left(22 a + 5\right)\cdot 29^{2} + \left(16 a + 12\right)\cdot 29^{3} + \left(13 a + 5\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,3,6)(2,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,2)(3,5)(4,6)$ $-1$ $-1$
$1$ $3$ $(1,3,6)(2,5,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,6,3)(2,4,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,5,6,2,3,4)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$1$ $6$ $(1,4,3,2,6,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.