Properties

Label 1.7_1093.6t1.1
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 1093 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$7651= 7 \cdot 1093 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 824 x^{4} + 549 x^{3} + 223865 x^{2} - 75076 x - 20049121 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 21 + \left(13 a + 14\right)\cdot 41 + \left(31 a + 30\right)\cdot 41^{2} + \left(2 a + 34\right)\cdot 41^{3} + \left(27 a + 2\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 6 + \left(27 a + 37\right)\cdot 41 + \left(9 a + 13\right)\cdot 41^{2} + \left(38 a + 20\right)\cdot 41^{3} + \left(13 a + 8\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 28 + \left(13 a + 16\right)\cdot 41 + \left(31 a + 15\right)\cdot 41^{2} + \left(2 a + 2\right)\cdot 41^{3} + \left(27 a + 12\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 24 + \left(27 a + 40\right)\cdot 41 + \left(9 a + 36\right)\cdot 41^{2} + \left(38 a + 35\right)\cdot 41^{3} + \left(13 a + 27\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 5 + \left(13 a + 20\right)\cdot 41 + \left(31 a + 38\right)\cdot 41^{2} + \left(2 a + 17\right)\cdot 41^{3} + \left(27 a + 31\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 40 + \left(27 a + 34\right)\cdot 41 + \left(9 a + 28\right)\cdot 41^{2} + \left(38 a + 11\right)\cdot 41^{3} + \left(13 a + 40\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,5,6,3,4)$
$(1,6)(2,3)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,6)(2,3)(4,5)$ $-1$ $-1$
$1$ $3$ $(1,5,3)(2,6,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,5)(2,4,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,5,6,3,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,4,3,6,5,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.