Properties

Label 1.7_107.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 107 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$749= 7 \cdot 107 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 76 x^{4} - 51 x^{3} + 2165 x^{2} - 676 x + 22679 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{749}(534,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 2 + \left(a + 39\right)\cdot 43 + \left(27 a + 24\right)\cdot 43^{2} + 15 a\cdot 43^{3} + \left(7 a + 31\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 6 + \left(a + 18\right)\cdot 43 + \left(27 a + 37\right)\cdot 43^{2} + \left(15 a + 30\right)\cdot 43^{3} + \left(7 a + 3\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 22 + \left(41 a + 41\right)\cdot 43 + \left(15 a + 10\right)\cdot 43^{2} + \left(27 a + 17\right)\cdot 43^{3} + \left(35 a + 12\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 38 + \left(a + 23\right)\cdot 43 + \left(27 a + 28\right)\cdot 43^{2} + \left(15 a + 28\right)\cdot 43^{3} + \left(7 a + 20\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 33 + \left(41 a + 35\right)\cdot 43 + \left(15 a + 19\right)\cdot 43^{2} + \left(27 a + 19\right)\cdot 43^{3} + \left(35 a + 38\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 29 + \left(41 a + 13\right)\cdot 43 + \left(15 a + 7\right)\cdot 43^{2} + \left(27 a + 32\right)\cdot 43^{3} + \left(35 a + 22\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,4,6,2,3)$
$(1,6)(2,5)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,6)(2,5)(3,4)$$-1$
$1$$3$$(1,4,2)(3,5,6)$$-\zeta_{3} - 1$
$1$$3$$(1,2,4)(3,6,5)$$\zeta_{3}$
$1$$6$$(1,5,4,6,2,3)$$-\zeta_{3}$
$1$$6$$(1,3,2,6,4,5)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.