Properties

Label 1.7_103.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 7 \cdot 103 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$721= 7 \cdot 103 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 73 x^{4} - 49 x^{3} + 2007 x^{2} - 625 x + 20357 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{721}(102,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 6 + \left(30 a + 20\right)\cdot 43 + \left(10 a + 29\right)\cdot 43^{2} + \left(3 a + 26\right)\cdot 43^{3} + \left(26 a + 26\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 38 a + 18 + \left(12 a + 17\right)\cdot 43 + \left(32 a + 6\right)\cdot 43^{2} + \left(39 a + 34\right)\cdot 43^{3} + \left(16 a + 16\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 a + 11 + \left(12 a + 2\right)\cdot 43 + \left(32 a + 10\right)\cdot 43^{2} + \left(39 a + 19\right)\cdot 43^{3} + \left(16 a + 6\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 22 + \left(12 a + 39\right)\cdot 43 + \left(32 a + 18\right)\cdot 43^{2} + \left(39 a + 21\right)\cdot 43^{3} + \left(16 a + 32\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 13 + \left(30 a + 35\right)\cdot 43 + \left(10 a + 25\right)\cdot 43^{2} + \left(3 a + 41\right)\cdot 43^{3} + \left(26 a + 36\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 17 + \left(30 a + 14\right)\cdot 43 + \left(10 a + 38\right)\cdot 43^{2} + \left(3 a + 28\right)\cdot 43^{3} + \left(26 a + 9\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(1,4,5,3,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,5)(4,6)$$-1$
$1$$3$$(1,5,6)(2,4,3)$$-\zeta_{3} - 1$
$1$$3$$(1,6,5)(2,3,4)$$\zeta_{3}$
$1$$6$$(1,4,5,3,6,2)$$-\zeta_{3}$
$1$$6$$(1,2,6,3,5,4)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.