Basic invariants
Dimension: | $1$ |
Group: | $C_6$ |
Conductor: | \(76\)\(\medspace = 2^{2} \cdot 19 \) |
Artin number field: | Galois closure of 6.6.158470336.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6$ |
Parity: | even |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$:
\( x^{2} + 7x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 10 a + 2 + \left(2 a + 10\right)\cdot 11 + \left(8 a + 6\right)\cdot 11^{2} + \left(6 a + 1\right)\cdot 11^{3} + \left(2 a + 9\right)\cdot 11^{4} + \left(6 a + 10\right)\cdot 11^{5} +O(11^{6})\)
$r_{ 2 }$ |
$=$ |
\( 7 a + 8 + 9 a\cdot 11 + \left(3 a + 8\right)\cdot 11^{2} + \left(9 a + 10\right)\cdot 11^{3} + \left(2 a + 9\right)\cdot 11^{4} + \left(2 a + 7\right)\cdot 11^{5} +O(11^{6})\)
| $r_{ 3 }$ |
$=$ |
\( 3 a + 5 + \left(a + 4\right)\cdot 11 + \left(4 a + 3\right)\cdot 11^{2} + \left(9 a + 5\right)\cdot 11^{3} + \left(5 a + 9\right)\cdot 11^{4} + \left(3 a + 6\right)\cdot 11^{5} +O(11^{6})\)
| $r_{ 4 }$ |
$=$ |
\( a + 9 + 8 a\cdot 11 + \left(2 a + 4\right)\cdot 11^{2} + \left(4 a + 9\right)\cdot 11^{3} + \left(8 a + 1\right)\cdot 11^{4} + 4 a\cdot 11^{5} +O(11^{6})\)
| $r_{ 5 }$ |
$=$ |
\( 4 a + 3 + \left(a + 10\right)\cdot 11 + \left(7 a + 2\right)\cdot 11^{2} + a\cdot 11^{3} + \left(8 a + 1\right)\cdot 11^{4} + \left(8 a + 3\right)\cdot 11^{5} +O(11^{6})\)
| $r_{ 6 }$ |
$=$ |
\( 8 a + 6 + \left(9 a + 6\right)\cdot 11 + \left(6 a + 7\right)\cdot 11^{2} + \left(a + 5\right)\cdot 11^{3} + \left(5 a + 1\right)\cdot 11^{4} + \left(7 a + 4\right)\cdot 11^{5} +O(11^{6})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values | |
$c1$ | $c2$ | |||
$1$ | $1$ | $()$ | $1$ | $1$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-1$ | $-1$ |
$1$ | $3$ | $(1,3,2)(4,6,5)$ | $\zeta_{3}$ | $-\zeta_{3} - 1$ |
$1$ | $3$ | $(1,2,3)(4,5,6)$ | $-\zeta_{3} - 1$ | $\zeta_{3}$ |
$1$ | $6$ | $(1,6,2,4,3,5)$ | $-\zeta_{3}$ | $\zeta_{3} + 1$ |
$1$ | $6$ | $(1,5,3,4,2,6)$ | $\zeta_{3} + 1$ | $-\zeta_{3}$ |