Basic invariants
Defining polynomial
$f(x)$ | $=$ | \(x^{2} - x + 188\) . |
The roots of $f$ are computed in $\Q_{ 5 }$ to precision 5.
Roots:
$r_{ 1 }$ |
$=$ |
\( 2 + 4\cdot 5 + 3\cdot 5^{2} + 3\cdot 5^{3} + 3\cdot 5^{4} +O(5^{5})\)
|
$r_{ 2 }$ |
$=$ |
\( 4 + 5^{2} + 5^{3} + 5^{4} +O(5^{5})\)
|
Generators of the action on the roots
$ r_{ 1 }, r_{ 2 } $
Character values on conjugacy classes
Size | Order | Action on
$ r_{ 1 }, r_{ 2 } $
| Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,2)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.