Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 + 35\cdot 37 + 20\cdot 37^{2} + 6\cdot 37^{3} + 24\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 24 + 9\cdot 37 + 2\cdot 37^{2} + 9\cdot 37^{3} + 12\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 25 + 10\cdot 37 + 26\cdot 37^{2} + 10\cdot 37^{3} + 14\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 27 + 19\cdot 37 + 12\cdot 37^{2} + 29\cdot 37^{3} + 25\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 29 + 5\cdot 37 + 11\cdot 37^{2} + 34\cdot 37^{3} + 30\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 33 + 5\cdot 37 + 19\cdot 37^{2} + 16\cdot 37^{3} + 27\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 35 + 33\cdot 37 + 22\cdot 37^{2} + 2\cdot 37^{3} + 13\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 36 + 26\cdot 37 + 32\cdot 37^{2} + 37^{3} +O\left(37^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(1,3,4,2)(5,7,8,6)$ |
| $(1,6,3,5,4,7,2,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $-1$ |
| $1$ | $4$ | $(1,3,4,2)(5,7,8,6)$ | $-\zeta_{8}^{2}$ |
| $1$ | $4$ | $(1,2,4,3)(5,6,8,7)$ | $\zeta_{8}^{2}$ |
| $1$ | $8$ | $(1,6,3,5,4,7,2,8)$ | $-\zeta_{8}^{3}$ |
| $1$ | $8$ | $(1,5,2,6,4,8,3,7)$ | $-\zeta_{8}$ |
| $1$ | $8$ | $(1,7,3,8,4,6,2,5)$ | $\zeta_{8}^{3}$ |
| $1$ | $8$ | $(1,8,2,7,4,5,3,6)$ | $\zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.