Properties

Label 1.73.8t1.1c3
Dimension 1
Group $C_8$
Conductor $ 73 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$73 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 5 x^{6} + 17 x^{5} - 46 x^{4} + 136 x^{3} + 320 x^{2} - 512 x + 4096 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{73}(22,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 35\cdot 37 + 20\cdot 37^{2} + 6\cdot 37^{3} + 24\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 9\cdot 37 + 2\cdot 37^{2} + 9\cdot 37^{3} + 12\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 + 10\cdot 37 + 26\cdot 37^{2} + 10\cdot 37^{3} + 14\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 + 19\cdot 37 + 12\cdot 37^{2} + 29\cdot 37^{3} + 25\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 + 5\cdot 37 + 11\cdot 37^{2} + 34\cdot 37^{3} + 30\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 33 + 5\cdot 37 + 19\cdot 37^{2} + 16\cdot 37^{3} + 27\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 35 + 33\cdot 37 + 22\cdot 37^{2} + 2\cdot 37^{3} + 13\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 36 + 26\cdot 37 + 32\cdot 37^{2} + 37^{3} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,8)(6,7)$
$(1,3,4,2)(5,7,8,6)$
$(1,6,3,5,4,7,2,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-1$
$1$$4$$(1,3,4,2)(5,7,8,6)$$\zeta_{8}^{2}$
$1$$4$$(1,2,4,3)(5,6,8,7)$$-\zeta_{8}^{2}$
$1$$8$$(1,6,3,5,4,7,2,8)$$-\zeta_{8}$
$1$$8$$(1,5,2,6,4,8,3,7)$$-\zeta_{8}^{3}$
$1$$8$$(1,7,3,8,4,6,2,5)$$\zeta_{8}$
$1$$8$$(1,8,2,7,4,5,3,6)$$\zeta_{8}^{3}$
The blue line marks the conjugacy class containing complex conjugation.