Properties

Label 1.72.6t1.d
Dimension $1$
Group $C_6$
Conductor $72$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:\(72\)\(\medspace = 2^{3} \cdot 3^{2}\)
Artin number field: Galois closure of 6.6.3359232.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Projective image: $C_1$
Projective field: \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \(x^{2} + 18 x + 2\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 14 a + 12 + \left(11 a + 10\right)\cdot 19 + \left(11 a + 9\right)\cdot 19^{2} + \left(12 a + 18\right)\cdot 19^{3} + \left(14 a + 17\right)\cdot 19^{4} +O(19^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 18 a + 10 + 8\cdot 19 + \left(5 a + 7\right)\cdot 19^{2} + \left(a + 11\right)\cdot 19^{3} + \left(16 a + 11\right)\cdot 19^{4} +O(19^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 15 a + 2 + \left(10 a + 2\right)\cdot 19 + \left(6 a + 2\right)\cdot 19^{2} + \left(11 a + 7\right)\cdot 19^{3} + \left(17 a + 6\right)\cdot 19^{4} +O(19^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 5 a + 7 + \left(7 a + 8\right)\cdot 19 + \left(7 a + 9\right)\cdot 19^{2} + 6 a\cdot 19^{3} + \left(4 a + 1\right)\cdot 19^{4} +O(19^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( a + 9 + \left(18 a + 10\right)\cdot 19 + \left(13 a + 11\right)\cdot 19^{2} + \left(17 a + 7\right)\cdot 19^{3} + \left(2 a + 7\right)\cdot 19^{4} +O(19^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 4 a + 17 + \left(8 a + 16\right)\cdot 19 + \left(12 a + 16\right)\cdot 19^{2} + \left(7 a + 11\right)\cdot 19^{3} + \left(a + 12\right)\cdot 19^{4} +O(19^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,3,5,4,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-1$ $-1$
$1$ $3$ $(1,5,6)(2,3,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,6,5)(2,4,3)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,3,5,4,6,2)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,2,6,4,5,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.