Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 + 4\cdot 37 + 30\cdot 37^{2} + 6\cdot 37^{3} + 5\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 22 + 36\cdot 37 + 12\cdot 37^{2} + 33\cdot 37^{3} + 22\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 23 + 18\cdot 37 + 10\cdot 37^{2} + 11\cdot 37^{3} + 13\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 27 + 34\cdot 37 + 32\cdot 37^{2} + 2\cdot 37^{3} + 31\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 36 + 16\cdot 37 + 24\cdot 37^{2} + 19\cdot 37^{3} + 37^{4} +O\left(37^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,5,2,4,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $5$ | $(1,5,2,4,3)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
| $1$ | $5$ | $(1,2,3,5,4)$ | $\zeta_{5}^{3}$ |
| $1$ | $5$ | $(1,4,5,3,2)$ | $\zeta_{5}^{2}$ |
| $1$ | $5$ | $(1,3,4,2,5)$ | $\zeta_{5}$ |
The blue line marks the conjugacy class containing complex conjugation.