Properties

Label 1.693.6t1.c
Dimension $1$
Group $C_6$
Conductor $693$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:\(693\)\(\medspace = 3^{2} \cdot 7 \cdot 11 \)
Artin number field: Galois closure of 6.0.20967191091.5
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: \( x^{2} + 97x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 84 a + 36 + \left(37 a + 20\right)\cdot 101 + \left(38 a + 30\right)\cdot 101^{2} + \left(91 a + 78\right)\cdot 101^{3} + \left(86 a + 81\right)\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 17 a + 57 + \left(63 a + 55\right)\cdot 101 + \left(62 a + 58\right)\cdot 101^{2} + \left(9 a + 12\right)\cdot 101^{3} + \left(14 a + 76\right)\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 84 a + 94 + \left(37 a + 41\right)\cdot 101 + \left(38 a + 55\right)\cdot 101^{2} + \left(91 a + 48\right)\cdot 101^{3} + \left(86 a + 67\right)\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 17 a + 26 + \left(63 a + 8\right)\cdot 101 + \left(62 a + 70\right)\cdot 101^{2} + \left(9 a + 72\right)\cdot 101^{3} + \left(14 a + 20\right)\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 84 a + 24 + \left(37 a + 89\right)\cdot 101 + \left(38 a + 43\right)\cdot 101^{2} + \left(91 a + 89\right)\cdot 101^{3} + \left(86 a + 21\right)\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 17 a + 69 + \left(63 a + 87\right)\cdot 101 + \left(62 a + 44\right)\cdot 101^{2} + \left(9 a + 1\right)\cdot 101^{3} + \left(14 a + 35\right)\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3,6,5,4)$
$(1,6)(2,5)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-1$ $-1$
$1$ $3$ $(1,3,5)(2,6,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,5,3)(2,4,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,3,6,5,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,4,5,6,3,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.