Properties

Label 1.65.4t1.c.b
Dimension $1$
Group $C_4$
Conductor $65$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_4$
Conductor: \(65\)\(\medspace = 5 \cdot 13 \)
Artin field: Galois closure of 4.4.274625.2
Galois orbit size: $2$
Smallest permutation container: $C_4$
Parity: even
Dirichlet character: \(\chi_{65}(47,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - 24x^{2} + 69x - 49 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 7 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 6\cdot 7^{2} + 3\cdot 7^{3} +O(7^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 4 + 2\cdot 7 + 7^{2} + 3\cdot 7^{3} +O(7^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 5 + 5\cdot 7^{2} + 3\cdot 7^{4} +O(7^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 6 + 3\cdot 7 + 7^{2} + 6\cdot 7^{3} + 2\cdot 7^{4} +O(7^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3,4,2)$
$(1,4)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,3,4,2)$$-\zeta_{4}$
$1$$4$$(1,2,4,3)$$\zeta_{4}$

The blue line marks the conjugacy class containing complex conjugation.