Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 37 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 35\cdot 37 + 10\cdot 37^{2} + 7\cdot 37^{3} + 30\cdot 37^{4} + 19\cdot 37^{5} +O\left(37^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 + 31\cdot 37 + 9\cdot 37^{2} + 20\cdot 37^{3} + 13\cdot 37^{4} + 36\cdot 37^{5} +O\left(37^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 20 + 20\cdot 37 + 24\cdot 37^{2} + 34\cdot 37^{4} + 31\cdot 37^{5} +O\left(37^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 22 + 12\cdot 37 + 23\cdot 37^{2} + 26\cdot 37^{3} + 27\cdot 37^{4} + 15\cdot 37^{5} +O\left(37^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 24 + 11\cdot 37 + 5\cdot 37^{2} + 19\cdot 37^{3} + 5\cdot 37^{4} + 7\cdot 37^{5} +O\left(37^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,3,5,4,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $5$ | $(1,3,5,4,2)$ | $\zeta_{5}^{2}$ |
| $1$ | $5$ | $(1,5,2,3,4)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
| $1$ | $5$ | $(1,4,3,2,5)$ | $\zeta_{5}$ |
| $1$ | $5$ | $(1,2,4,5,3)$ | $\zeta_{5}^{3}$ |
The blue line marks the conjugacy class containing complex conjugation.