Properties

Label 1.63.3t1.a.a
Dimension $1$
Group $C_3$
Conductor $63$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_3$
Conductor: \(63\)\(\medspace = 3^{2} \cdot 7 \)
Artin field: Galois closure of 3.3.3969.2
Galois orbit size: $2$
Smallest permutation container: $C_3$
Parity: even
Dirichlet character: \(\chi_{63}(4,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{3} - 21x - 35 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 5 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 3\cdot 5 + 5^{2} + 5^{4} +O(5^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 1 + 3\cdot 5 + 3\cdot 5^{2} + 5^{3} + 4\cdot 5^{4} +O(5^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 + 3\cdot 5 + 4\cdot 5^{2} + 2\cdot 5^{3} + 4\cdot 5^{4} +O(5^{5})\) Copy content Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$3$$(1,2,3)$$\zeta_{3}$
$1$$3$$(1,3,2)$$-\zeta_{3} - 1$