Properties

Label 1.601.5t1.1c4
Dimension 1
Group $C_5$
Conductor $ 601 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$601 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 240 x^{3} - 1755 x^{2} - 3731 x - 2399 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{601}(32,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 35\cdot 37 + 18\cdot 37^{2} + 30\cdot 37^{3} + 16\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 6\cdot 37^{3} + 29\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 7\cdot 37 + 27\cdot 37^{2} + 36\cdot 37^{3} + 18\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 + 36\cdot 37 + 35\cdot 37^{2} + 14\cdot 37^{3} + 35\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 36 + 30\cdot 37 + 28\cdot 37^{2} + 22\cdot 37^{3} + 10\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,5,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,5,2,4,3)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,2,3,5,4)$$\zeta_{5}^{3}$
$1$$5$$(1,4,5,3,2)$$\zeta_{5}^{2}$
$1$$5$$(1,3,4,2,5)$$\zeta_{5}$
The blue line marks the conjugacy class containing complex conjugation.