# Properties

 Label 1.60.2t1.a.a Dimension $1$ Group $C_2$ Conductor $60$ Root number $1$ Indicator $1$

# Related objects

## Basic invariants

 Dimension: $1$ Group: $C_2$ Conductor: $$60$$$$\medspace = 2^{2} \cdot 3 \cdot 5$$ Frobenius-Schur indicator: $1$ Root number: $1$ Artin field: Galois closure of $$\Q(\sqrt{15})$$ Galois orbit size: $1$ Smallest permutation container: $C_2$ Parity: even Dirichlet character: $$\displaystyle\left(\frac{60}{\bullet}\right)$$ Projective image: $C_1$ Projective field: Galois closure of $$\Q$$

## Defining polynomial

 $f(x)$ $=$ $$x^{2} - 15$$ x^2 - 15 .

The roots of $f$ are computed in $\Q_{ 7 }$ to precision 5.

Roots:
 $r_{ 1 }$ $=$ $$1 + 7 + 3\cdot 7^{2} + 2\cdot 7^{4} +O(7^{5})$$ 1 + 7 + 3*7^2 + 2*7^4+O(7^5) $r_{ 2 }$ $=$ $$6 + 5\cdot 7 + 3\cdot 7^{2} + 6\cdot 7^{3} + 4\cdot 7^{4} +O(7^{5})$$ 6 + 5*7 + 3*7^2 + 6*7^3 + 4*7^4+O(7^5)

## Generators of the action on the roots $r_{ 1 }, r_{ 2 }$

 Cycle notation $(1,2)$

## Character values on conjugacy classes

 Size Order Action on $r_{ 1 }, r_{ 2 }$ Character value $1$ $1$ $()$ $1$ $1$ $2$ $(1,2)$ $-1$

The blue line marks the conjugacy class containing complex conjugation.