Properties

Label 1.5e2_11.5t1.4c3
Dimension 1
Group $C_5$
Conductor $ 5^{2} \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$275= 5^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{5} - 110 x^{3} - 220 x^{2} + 1485 x + 1276 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{275}(31,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 12\cdot 29 + 25\cdot 29^{2} + 3\cdot 29^{4} + 3\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 + 3\cdot 29 + 25\cdot 29^{2} + 10\cdot 29^{3} + 11\cdot 29^{4} + 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 5 + 11\cdot 29 + 9\cdot 29^{2} + 16\cdot 29^{3} + 19\cdot 29^{4} + 26\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 8 + 12\cdot 29 + 12\cdot 29^{2} + 26\cdot 29^{3} + 7\cdot 29^{4} + 6\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 + 19\cdot 29 + 14\cdot 29^{2} + 3\cdot 29^{3} + 16\cdot 29^{4} + 20\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,5,3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,2,5,3,4)$$\zeta_{5}^{3}$
$1$$5$$(1,5,4,2,3)$$\zeta_{5}$
$1$$5$$(1,3,2,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,4,3,5,2)$$\zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.