Properties

Label 1.5e2_11.5t1.3c4
Dimension 1
Group $C_5$
Conductor $ 5^{2} \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$275= 5^{2} \cdot 11 $
Artin number field: Splitting field of $f= x^{5} - 110 x^{3} - 55 x^{2} + 660 x + 649 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{275}(81,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 30\cdot 37 + 2\cdot 37^{2} + 10\cdot 37^{3} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 34\cdot 37 + 24\cdot 37^{3} + 30\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 29\cdot 37 + 12\cdot 37^{2} + 4\cdot 37^{3} + 15\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 31 + 2\cdot 37 + 30\cdot 37^{2} + 32\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 + 13\cdot 37 + 27\cdot 37^{2} + 34\cdot 37^{3} + 32\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3,4,5,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,3,4,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,4,2,3,5)$$\zeta_{5}^{3}$
$1$$5$$(1,5,3,2,4)$$\zeta_{5}^{2}$
$1$$5$$(1,2,5,4,3)$$\zeta_{5}$
The blue line marks the conjugacy class containing complex conjugation.