Properties

Label 1.5_89.4t1.2c2
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 89 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$445= 5 \cdot 89 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 111 x^{2} - 111 x + 2531 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{445}(88,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 11\cdot 59 + 44\cdot 59^{2} + 5\cdot 59^{3} + 47\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 11\cdot 59 + 47\cdot 59^{2} + 37\cdot 59^{3} + 20\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 42\cdot 59 + 37\cdot 59^{2} + 7\cdot 59^{3} + 16\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 53\cdot 59 + 47\cdot 59^{2} + 7\cdot 59^{3} + 34\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,2,4,3)$$-\zeta_{4}$
$1$$4$$(1,3,4,2)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.