Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 43 a + 48 + \left(9 a + 39\right)\cdot 53 + \left(17 a + 18\right)\cdot 53^{2} + \left(36 a + 40\right)\cdot 53^{3} + \left(35 a + 25\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 a + 40 + \left(43 a + 22\right)\cdot 53 + \left(35 a + 36\right)\cdot 53^{2} + \left(16 a + 43\right)\cdot 53^{3} + \left(17 a + 6\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 43 a + 27 + \left(9 a + 26\right)\cdot 53 + \left(17 a + 30\right)\cdot 53^{2} + \left(36 a + 21\right)\cdot 53^{3} + \left(35 a + 6\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 43 a + 12 + \left(9 a + 45\right)\cdot 53 + \left(17 a + 47\right)\cdot 53^{2} + \left(36 a + 10\right)\cdot 53^{3} + \left(35 a + 20\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 10 a + 8 + \left(43 a + 36\right)\cdot 53 + \left(35 a + 24\right)\cdot 53^{2} + \left(16 a + 9\right)\cdot 53^{3} + \left(17 a + 26\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 10 a + 25 + \left(43 a + 41\right)\cdot 53 + 35 a\cdot 53^{2} + \left(16 a + 33\right)\cdot 53^{3} + \left(17 a + 20\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,6,3,5,4,2)$ |
| $(1,5)(2,3)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$1$ |
$1$ |
| $1$ |
$2$ |
$(1,5)(2,3)(4,6)$ |
$-1$ |
$-1$ |
| $1$ |
$3$ |
$(1,3,4)(2,6,5)$ |
$\zeta_{3}$ |
$-\zeta_{3} - 1$ |
| $1$ |
$3$ |
$(1,4,3)(2,5,6)$ |
$-\zeta_{3} - 1$ |
$\zeta_{3}$ |
| $1$ |
$6$ |
$(1,6,3,5,4,2)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $1$ |
$6$ |
$(1,2,4,5,3,6)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.