Properties

Label 1.5_7_19.6t1.2c1
Dimension 1
Group $C_6$
Conductor $ 5 \cdot 7 \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$665= 5 \cdot 7 \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 67 x^{4} - 45 x^{3} + 1709 x^{2} - 529 x + 16199 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{665}(569,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 7 + 12\cdot 29 + \left(11 a + 1\right)\cdot 29^{2} + \left(11 a + 20\right)\cdot 29^{3} + \left(15 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 21 + 8\cdot 29 + \left(11 a + 15\right)\cdot 29^{2} + \left(11 a + 21\right)\cdot 29^{3} + \left(15 a + 26\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 19 + \left(28 a + 2\right)\cdot 29 + \left(17 a + 14\right)\cdot 29^{2} + \left(17 a + 22\right)\cdot 29^{3} + \left(13 a + 5\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 1 + \left(28 a + 23\right)\cdot 29 + \left(17 a + 26\right)\cdot 29^{2} + \left(17 a + 7\right)\cdot 29^{3} + 13 a\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 15 + \left(28 a + 19\right)\cdot 29 + \left(17 a + 11\right)\cdot 29^{2} + \left(17 a + 9\right)\cdot 29^{3} + \left(13 a + 5\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 25 + 20\cdot 29 + \left(11 a + 17\right)\cdot 29^{2} + \left(11 a + 5\right)\cdot 29^{3} + \left(15 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,6,4,2,3)$
$(1,4)(2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,6,2)(3,5,4)$$\zeta_{3}$
$1$$3$$(1,2,6)(3,4,5)$$-\zeta_{3} - 1$
$1$$6$$(1,5,6,4,2,3)$$\zeta_{3} + 1$
$1$$6$$(1,3,2,4,6,5)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.