Properties

Label 1.5_7_19.4t1.1c1
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 7 \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$665= 5 \cdot 7 \cdot 19 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 166 x^{2} - 166 x + 5611 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{665}(132,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8\cdot 31 + 24\cdot 31^{2} + 13\cdot 31^{3} + 21\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 1 + 3\cdot 31 + 29\cdot 31^{2} + 3\cdot 31^{3} + 11\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 + 3\cdot 31 + 14\cdot 31^{2} + 27\cdot 31^{3} + 18\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 16\cdot 31 + 25\cdot 31^{2} + 16\cdot 31^{3} + 10\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,2,4,3)$$\zeta_{4}$
$1$$4$$(1,3,4,2)$$-\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.