Properties

Label 1.5_7_19.12t1.1c2
Dimension 1
Group $C_{12}$
Conductor $ 5 \cdot 7 \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_{12}$
Conductor:$665= 5 \cdot 7 \cdot 19 $
Artin number field: Splitting field of $f= x^{12} - x^{11} + 45 x^{10} - 25 x^{9} + 1941 x^{8} - 4660 x^{7} + 88464 x^{6} - 169280 x^{5} + 3763456 x^{4} - 5550080 x^{3} + 8192000 x^{2} - 11534336 x + 16777216 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_{12}$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{665}(653,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{4} + 9 x^{2} + 38 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a^{3} + 37 a^{2} + 5 a + 2 + \left(19 a^{3} + 47 a^{2} + 12 a + 52\right)\cdot 53 + \left(37 a^{3} + 36 a^{2} + 22 a + 29\right)\cdot 53^{2} + \left(14 a^{3} + 40 a^{2} + 24 a + 37\right)\cdot 53^{3} + \left(44 a^{3} + 10 a^{2} + 31 a + 36\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 a^{3} + 7 a^{2} + 34 a + 8 + \left(36 a^{3} + 11 a^{2} + 14 a + 19\right)\cdot 53 + \left(8 a^{3} + 44 a^{2} + 37 a + 17\right)\cdot 53^{2} + \left(37 a^{3} + 25 a^{2} + 26 a + 36\right)\cdot 53^{3} + \left(41 a^{3} + 33 a^{2} + 24 a + 7\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a^{3} + 8 a^{2} + 34 a + 22 + \left(44 a^{2} + 26 a + 29\right)\cdot 53 + \left(6 a^{3} + 4 a^{2} + 35 a + 25\right)\cdot 53^{2} + \left(21 a^{3} + 49 a^{2} + 21 a + 19\right)\cdot 53^{3} + \left(40 a^{3} + 41 a^{2} + 26 a + 13\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 a^{3} + 35 a^{2} + 13 a + 24 + \left(a^{3} + 46 a^{2} + 51 a + 28\right)\cdot 53 + \left(35 a^{3} + 50 a^{2} + 43 a + 29\right)\cdot 53^{2} + \left(18 a^{3} + 9 a^{2} + 41 a + 20\right)\cdot 53^{3} + \left(47 a^{3} + 20 a^{2} + 11 a + 29\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a^{3} + 25 a^{2} + 22 a + 30 + \left(4 a^{3} + 9 a^{2} + 24 a + 7\right)\cdot 53 + \left(21 a^{3} + 34 a^{2} + 37 a + 13\right)\cdot 53^{2} + \left(46 a^{3} + 33 a^{2} + 19 a + 37\right)\cdot 53^{3} + \left(8 a^{3} + 48 a^{2} + 28 a + 42\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 43 a^{3} + 14 a^{2} + 33 a + 12 + \left(32 a^{3} + 8 a^{2} + 31 a + 47\right)\cdot 53 + \left(23 a^{3} + 20 a^{2} + 49 a + 48\right)\cdot 53^{2} + \left(14 a^{3} + 20 a^{2} + 5 a + 20\right)\cdot 53^{3} + \left(16 a^{3} + 33 a^{2} + 16 a + 52\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 47 a^{3} + 19 a^{2} + 9 a + 52 + \left(25 a^{2} + 3 a + 13\right)\cdot 53 + \left(40 a^{3} + 11 a^{2} + 9 a + 44\right)\cdot 53^{2} + \left(40 a^{3} + 37 a^{2} + 39 a + 48\right)\cdot 53^{3} + \left(43 a^{3} + 52 a^{2} + 14 a + 51\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 42 a^{3} + 22 a^{2} + 13 a + 37 + \left(17 a^{3} + 18 a^{2} + 43 a + 10\right)\cdot 53 + \left(26 a^{3} + 31 a^{2} + 48 a + 38\right)\cdot 53^{2} + \left(30 a^{3} + 36 a^{2} + 33 a\right)\cdot 53^{3} + \left(23 a^{3} + 10 a^{2} + 34 a + 51\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 34 a^{3} + 42 a^{2} + 5 a + 50 + \left(32 a^{3} + 41 a^{2} + 11 a + 38\right)\cdot 53 + \left(22 a^{3} + 52 a^{2} + 39 a + 25\right)\cdot 53^{2} + \left(29 a^{3} + 31 a^{2} + 20 a + 20\right)\cdot 53^{3} + \left(30 a^{3} + 33 a + 50\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 10 }$ $=$ $ 23 a^{3} + 42 a^{2} + 46 a + 36 + \left(49 a^{3} + 29 a^{2} + 49 a + 9\right)\cdot 53 + \left(35 a^{3} + 32 a^{2} + 28 a + 52\right)\cdot 53^{2} + \left(19 a^{3} + 33 a^{2} + 3 a + 49\right)\cdot 53^{3} + \left(46 a^{3} + 41 a^{2} + 35 a + 44\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 11 }$ $=$ $ 16 a^{3} + 20 a^{2} + 29 a + 38 + \left(6 a^{2} + 40 a + 39\right)\cdot 53 + \left(33 a^{3} + 8 a^{2} + 2 a + 23\right)\cdot 53^{2} + \left(17 a^{3} + 17 a^{2} + 34 a + 17\right)\cdot 53^{3} + \left(37 a^{3} + 30 a\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 12 }$ $=$ $ 33 a^{3} + 47 a^{2} + 22 a + 8 + \left(15 a^{3} + 28 a^{2} + 9 a + 21\right)\cdot 53 + \left(28 a^{3} + 43 a^{2} + 16 a + 22\right)\cdot 53^{2} + \left(27 a^{3} + 34 a^{2} + 46 a + 8\right)\cdot 53^{3} + \left(43 a^{3} + 23 a^{2} + 30 a + 43\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,10,11,9,8,6,7,4,5,3,2,12)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$$-1$
$1$$3$$(1,8,5)(2,11,7)(3,10,6)(4,12,9)$$\zeta_{12}^{2} - 1$
$1$$3$$(1,5,8)(2,7,11)(3,6,10)(4,9,12)$$-\zeta_{12}^{2}$
$1$$4$$(1,9,7,3)(2,10,8,4)(5,12,11,6)$$-\zeta_{12}^{3}$
$1$$4$$(1,3,7,9)(2,4,8,10)(5,6,11,12)$$\zeta_{12}^{3}$
$1$$6$$(1,11,8,7,5,2)(3,12,10,9,6,4)$$\zeta_{12}^{2}$
$1$$6$$(1,2,5,7,8,11)(3,4,6,9,10,12)$$-\zeta_{12}^{2} + 1$
$1$$12$$(1,10,11,9,8,6,7,4,5,3,2,12)$$-\zeta_{12}$
$1$$12$$(1,6,2,9,5,10,7,12,8,3,11,4)$$-\zeta_{12}^{3} + \zeta_{12}$
$1$$12$$(1,4,11,3,8,12,7,10,5,9,2,6)$$\zeta_{12}$
$1$$12$$(1,12,2,3,5,4,7,6,8,9,11,10)$$\zeta_{12}^{3} - \zeta_{12}$
The blue line marks the conjugacy class containing complex conjugation.