Properties

Label 1.5_73.8t1.1c3
Dimension 1
Group $C_8$
Conductor $ 5 \cdot 73 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$365= 5 \cdot 73 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 78 x^{6} + 17 x^{5} + 1706 x^{4} + 3421 x^{3} + 14117 x^{2} + 45478 x + 272444 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{365}(314,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 27\cdot 89 + 25\cdot 89^{2} + 49\cdot 89^{3} + 27\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 5\cdot 89 + 88\cdot 89^{2} + 62\cdot 89^{3} + 44\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 + 75\cdot 89 + 7\cdot 89^{2} + 26\cdot 89^{3} + 77\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 + 68\cdot 89 + 60\cdot 89^{2} + 24\cdot 89^{3} + 74\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 + 62\cdot 89 + 29\cdot 89^{2} + 10\cdot 89^{3} + 44\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 45 + 26\cdot 89 + 30\cdot 89^{2} + 56\cdot 89^{3} + 34\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 73 + 64\cdot 89 + 25\cdot 89^{2} + 50\cdot 89^{3} + 6\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 84 + 26\cdot 89 + 88\cdot 89^{2} + 75\cdot 89^{3} + 46\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,7,6,3,4,5,8)$
$(1,5,3,7)(2,8,4,6)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)(5,7)(6,8)$$-1$
$1$$4$$(1,7,3,5)(2,6,4,8)$$\zeta_{8}^{2}$
$1$$4$$(1,5,3,7)(2,8,4,6)$$-\zeta_{8}^{2}$
$1$$8$$(1,2,7,6,3,4,5,8)$$-\zeta_{8}$
$1$$8$$(1,6,5,2,3,8,7,4)$$-\zeta_{8}^{3}$
$1$$8$$(1,4,7,8,3,2,5,6)$$\zeta_{8}$
$1$$8$$(1,8,5,4,3,6,7,2)$$\zeta_{8}^{3}$
The blue line marks the conjugacy class containing complex conjugation.