Properties

Label 1.5_71.4t1.1c1
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 71 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$355= 5 \cdot 71 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 89 x^{2} + 89 x + 1531 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even
Corresponding Dirichlet character: \(\chi_{355}(283,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 50\cdot 59 + 57\cdot 59^{2} + 5\cdot 59^{3} + 49\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 33\cdot 59 + 35\cdot 59^{2} + 37\cdot 59^{3} + 45\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 + 3\cdot 59 + 27\cdot 59^{2} + 39\cdot 59^{3} + 46\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 31\cdot 59 + 56\cdot 59^{2} + 34\cdot 59^{3} + 35\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)$$-1$
$1$$4$$(1,2,3,4)$$\zeta_{4}$
$1$$4$$(1,4,3,2)$$-\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.