Properties

Label 1.5_7.6t1.2
Dimension 1
Group $C_6$
Conductor $ 5 \cdot 7 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$35= 5 \cdot 7 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 8 x^{4} - 8 x^{3} + 22 x^{2} - 22 x + 29 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 19 + \left(33 a + 1\right)\cdot 41 + \left(27 a + 38\right)\cdot 41^{2} + \left(14 a + 39\right)\cdot 41^{3} + \left(9 a + 39\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 a + 29 + \left(40 a + 39\right)\cdot 41 + \left(22 a + 39\right)\cdot 41^{2} + \left(15 a + 2\right)\cdot 41^{3} + \left(8 a + 31\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 16 + 15\cdot 41 + \left(18 a + 27\right)\cdot 41^{2} + \left(25 a + 26\right)\cdot 41^{3} + \left(32 a + 40\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 21 + \left(27 a + 16\right)\cdot 41 + \left(34 a + 8\right)\cdot 41^{2} + \left(28 a + 34\right)\cdot 41^{3} + \left(7 a + 22\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 31 + \left(13 a + 40\right)\cdot 41 + \left(6 a + 2\right)\cdot 41^{2} + \left(12 a + 4\right)\cdot 41^{3} + \left(33 a + 17\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 a + 8 + \left(7 a + 9\right)\cdot 41 + \left(13 a + 6\right)\cdot 41^{2} + \left(26 a + 15\right)\cdot 41^{3} + \left(31 a + 12\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,3,6,4,2)$
$(1,6)(2,3)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,6)(2,3)(4,5)$ $-1$ $-1$
$1$ $3$ $(1,3,4)(2,5,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,4,3)(2,6,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,5,3,6,4,2)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,2,4,6,3,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.