Properties

Label 1.5_67.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 5 \cdot 67 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$335= 5 \cdot 67 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 48 x^{4} + 57 x^{3} + 483 x^{2} - 626 x - 311 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{335}(104,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 9 + \left(42 a + 13\right)\cdot 43 + \left(27 a + 28\right)\cdot 43^{2} + \left(38 a + 2\right)\cdot 43^{3} + 29\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 40 + 4\cdot 43 + 15 a\cdot 43^{2} + \left(4 a + 24\right)\cdot 43^{3} + \left(42 a + 5\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 7 + 12\cdot 43 + \left(15 a + 7\right)\cdot 43^{2} + 4 a\cdot 43^{3} + \left(42 a + 11\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 a + 25 + \left(42 a + 37\right)\cdot 43 + \left(27 a + 21\right)\cdot 43^{2} + \left(38 a + 32\right)\cdot 43^{3} + 5\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 34 + 30\cdot 43 + \left(15 a + 13\right)\cdot 43^{2} + \left(4 a + 13\right)\cdot 43^{3} + \left(42 a + 34\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 25 a + 15 + \left(42 a + 30\right)\cdot 43 + \left(27 a + 14\right)\cdot 43^{2} + \left(38 a + 13\right)\cdot 43^{3} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,4,5,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,6)(3,4)$$-1$
$1$$3$$(1,4,6)(2,5,3)$$-\zeta_{3} - 1$
$1$$3$$(1,6,4)(2,3,5)$$\zeta_{3}$
$1$$6$$(1,2,4,5,6,3)$$-\zeta_{3}$
$1$$6$$(1,3,6,5,4,2)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.