Properties

Label 1.5_431.4t1.1c2
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 431 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$2155= 5 \cdot 431 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 539 x^{2} + 539 x + 57781 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even
Corresponding Dirichlet character: \(\chi_{2155}(1723,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 6\cdot 41 + 34\cdot 41^{2} + 6\cdot 41^{3} + 13\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 14\cdot 41 + 35\cdot 41^{2} + 12\cdot 41^{3} + 29\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 + 4\cdot 41 + 27\cdot 41^{2} + 17\cdot 41^{3} + 24\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 + 15\cdot 41 + 26\cdot 41^{2} + 3\cdot 41^{3} + 15\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3,4,2)$
$(1,4)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,3,4,2)$$-\zeta_{4}$
$1$$4$$(1,2,4,3)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.