Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 + 6\cdot 41 + 34\cdot 41^{2} + 6\cdot 41^{3} + 13\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 15 + 14\cdot 41 + 35\cdot 41^{2} + 12\cdot 41^{3} + 29\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 20 + 4\cdot 41 + 27\cdot 41^{2} + 17\cdot 41^{3} + 24\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 39 + 15\cdot 41 + 26\cdot 41^{2} + 3\cdot 41^{3} + 15\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,3,4,2)$ |
| $(1,4)(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$1$ |
$1$ |
| $1$ |
$2$ |
$(1,4)(2,3)$ |
$-1$ |
$-1$ |
| $1$ |
$4$ |
$(1,3,4,2)$ |
$\zeta_{4}$ |
$-\zeta_{4}$ |
| $1$ |
$4$ |
$(1,2,4,3)$ |
$-\zeta_{4}$ |
$\zeta_{4}$ |
The blue line marks the conjugacy class containing complex conjugation.