Properties

Label 1.5_37.4t1.4
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 37 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$185= 5 \cdot 37 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 42 x^{2} - 44 x + 641 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 27 + 37\cdot 67 + 39\cdot 67^{2} + 53\cdot 67^{3} + 23\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 + 52\cdot 67 + 50\cdot 67^{2} + 66\cdot 67^{3} + 41\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 57 + 65\cdot 67 + 5\cdot 67^{2} + 4\cdot 67^{3} + 25\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 63 + 44\cdot 67 + 37\cdot 67^{2} + 9\cdot 67^{3} + 43\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$1$ $4$ $(1,4,2,3)$ $\zeta_{4}$ $-\zeta_{4}$
$1$ $4$ $(1,3,2,4)$ $-\zeta_{4}$ $\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.