Properties

Label 1.5_331.4t1.1
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 331 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$1655= 5 \cdot 331 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 414 x^{2} + 414 x + 34031 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 27\cdot 31 + 12\cdot 31^{2} + 15\cdot 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 19\cdot 31 + 28\cdot 31^{2} + 18\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 + 9\cdot 31 + 30\cdot 31^{2} + 15\cdot 31^{3} + 5\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 + 4\cdot 31 + 21\cdot 31^{2} + 11\cdot 31^{3} + 9\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,4)$ $-1$ $-1$
$1$ $4$ $(1,2,3,4)$ $\zeta_{4}$ $-\zeta_{4}$
$1$ $4$ $(1,4,3,2)$ $-\zeta_{4}$ $\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.