Properties

Label 1.5_31.6t1.1
Dimension 1
Group $C_6$
Conductor $ 5 \cdot 31 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$155= 5 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 24 x^{4} + 7 x^{3} + 112 x^{2} + 23 x - 89 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 21 a + 20 + \left(9 a + 20\right)\cdot 23 + \left(8 a + 20\right)\cdot 23^{2} + \left(2 a + 1\right)\cdot 23^{3} + \left(18 a + 13\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 15 + \left(13 a + 6\right)\cdot 23 + \left(14 a + 7\right)\cdot 23^{2} + \left(20 a + 19\right)\cdot 23^{3} + \left(4 a + 7\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 16 + \left(13 a + 19\right)\cdot 23 + \left(14 a + 4\right)\cdot 23^{2} + \left(20 a + 21\right)\cdot 23^{3} + 4 a\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 21 + \left(13 a + 17\right)\cdot 23 + \left(14 a + 9\right)\cdot 23^{2} + \left(20 a + 11\right)\cdot 23^{3} + \left(4 a + 7\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 19 + \left(9 a + 7\right)\cdot 23 + 8 a\cdot 23^{2} + 2 a\cdot 23^{3} + \left(18 a + 20\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 2 + \left(9 a + 19\right)\cdot 23 + \left(8 a + 2\right)\cdot 23^{2} + \left(2 a + 15\right)\cdot 23^{3} + \left(18 a + 19\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(1,4,5,3,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,5)(4,6)$ $-1$ $-1$
$1$ $3$ $(1,5,6)(2,4,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,6,5)(2,3,4)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,4,5,3,6,2)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,2,6,3,5,4)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.