Properties

Label 1.5_31.12t1.1c3
Dimension 1
Group $C_{12}$
Conductor $ 5 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_{12}$
Conductor:$155= 5 \cdot 31 $
Artin number field: Splitting field of $f= x^{12} - x^{11} + 11 x^{10} - 13 x^{9} + 115 x^{8} - 46 x^{7} + 1092 x^{6} - 632 x^{5} + 11184 x^{4} - 8768 x^{3} + 6912 x^{2} - 5120 x + 4096 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_{12}$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{155}(98,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{4} + 3 x^{2} + 19 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 17 a^{3} + 16 a^{2} + 19 a + 22 + \left(14 a^{3} + 4 a^{2} + 17 a + 16\right)\cdot 23 + \left(2 a^{3} + 18 a^{2} + 15 a + 8\right)\cdot 23^{2} + \left(16 a^{3} + 3 a^{2} + a + 16\right)\cdot 23^{3} + \left(a^{3} + 12 a^{2} + 22 a + 1\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a^{3} + 12 a^{2} + 4 a + 10 + \left(19 a^{3} + 6 a^{2} + 2 a + 20\right)\cdot 23 + \left(2 a^{3} + 16 a^{2} + 2 a + 9\right)\cdot 23^{2} + \left(21 a^{3} + 18 a^{2} + 21 a + 21\right)\cdot 23^{3} + \left(12 a^{3} + 11 a^{2} + 15 a + 18\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a^{3} + 11 a^{2} + 18 a + 3 + \left(18 a^{3} + 9 a^{2} + 11 a + 12\right)\cdot 23 + \left(3 a^{3} + 3 a^{2} + 13 a + 20\right)\cdot 23^{2} + \left(20 a^{3} + 17 a^{2} + 11 a + 7\right)\cdot 23^{3} + \left(14 a^{3} + 4 a^{2} + a + 17\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a^{3} + 13 a^{2} + 3 a + 8 + \left(2 a^{3} + 6 a^{2} + 22 a + 11\right)\cdot 23 + \left(a^{3} + 9 a^{2} + 16 a + 3\right)\cdot 23^{2} + \left(15 a^{3} + 22 a^{2} + 9 a + 15\right)\cdot 23^{3} + \left(11 a^{2} + 13 a + 22\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{3} + 10 a^{2} + 11 a + 16 + \left(10 a^{3} + a^{2} + 13\right)\cdot 23 + \left(3 a^{3} + 11 a^{2} + 6 a + 21\right)\cdot 23^{2} + \left(10 a^{3} + 18 a^{2} + 13 a + 8\right)\cdot 23^{3} + \left(10 a^{3} + 15 a^{2} + 3 a + 22\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 a^{3} + 15 a^{2} + 2 a + 12 + \left(13 a^{3} + 19 a^{2} + 20 a + 4\right)\cdot 23 + \left(18 a^{3} + 9 a^{2} + 4 a\right)\cdot 23^{2} + \left(20 a^{3} + 8 a^{2} + 14 a + 13\right)\cdot 23^{3} + \left(4 a^{3} + 22 a^{2} + 10 a + 12\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 13 a^{3} + 7 a^{2} + 14 a + 22 + \left(17 a^{3} + 20 a^{2} + 13 a + 2\right)\cdot 23 + \left(15 a^{3} + 19 a^{2} + 8 a + 9\right)\cdot 23^{2} + \left(a^{3} + 10 a^{2} + 2 a + 3\right)\cdot 23^{3} + \left(8 a^{3} + 4 a^{2} + 7 a + 6\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 11 a^{3} + 22 a^{2} + 15 a + 3 + \left(20 a^{3} + 12 a^{2} + 19 a + 19\right)\cdot 23 + \left(8 a^{3} + 11 a^{2} + 2 a + 18\right)\cdot 23^{2} + \left(4 a^{3} + 6 a^{2} + 6 a + 2\right)\cdot 23^{3} + \left(a^{3} + 21 a^{2} + 8 a + 8\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 3 a^{3} + 6 a^{2} + 14 a + 10 + \left(11 a^{3} + 13 a^{2} + a + 12\right)\cdot 23 + \left(10 a^{2} + 22 a + 19\right)\cdot 23^{2} + \left(12 a^{3} + 19 a^{2} + 7\right)\cdot 23^{3} + \left(4 a^{3} + 22 a^{2} + 6 a + 19\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 10 }$ $=$ $ 14 a^{3} + a^{2} + 17 a + 10 + \left(17 a^{3} + 19 a^{2} + 7\right)\cdot 23 + \left(16 a^{3} + 10 a^{2} + 19 a + 21\right)\cdot 23^{2} + \left(a^{3} + 6 a^{2} + 16 a + 8\right)\cdot 23^{3} + \left(a^{3} + 10 a^{2} + 17 a + 1\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 11 }$ $=$ $ a^{3} + 20 a^{2} + 17 a + 7 + \left(15 a^{3} + 18 a^{2} + 19 a + 2\right)\cdot 23 + \left(7 a^{3} + 12 a^{2} + 13 a + 3\right)\cdot 23^{2} + \left(5 a^{3} + 18 a^{2} + 3 a + 17\right)\cdot 23^{3} + \left(5 a^{3} + 7 a^{2} + 14 a + 16\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 12 }$ $=$ $ 14 a^{3} + 5 a^{2} + 4 a + 16 + \left(5 a^{2} + 8 a + 14\right)\cdot 23 + \left(10 a^{3} + 4 a^{2} + 12 a + 1\right)\cdot 23^{2} + \left(9 a^{3} + 10 a^{2} + 13 a + 15\right)\cdot 23^{3} + \left(3 a^{3} + 15 a^{2} + 17 a + 13\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,8,11,3)(2,4,9,6)(5,7,12,10)$
$(1,5,4,3,10,2,11,12,6,8,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,11)(2,9)(3,8)(4,6)(5,12)(7,10)$$-1$
$1$$3$$(1,10,6)(2,8,5)(3,12,9)(4,11,7)$$-\zeta_{12}^{2}$
$1$$3$$(1,6,10)(2,5,8)(3,9,12)(4,7,11)$$\zeta_{12}^{2} - 1$
$1$$4$$(1,8,11,3)(2,4,9,6)(5,7,12,10)$$-\zeta_{12}^{3}$
$1$$4$$(1,3,11,8)(2,6,9,4)(5,10,12,7)$$\zeta_{12}^{3}$
$1$$6$$(1,4,10,11,6,7)(2,12,8,9,5,3)$$-\zeta_{12}^{2} + 1$
$1$$6$$(1,7,6,11,10,4)(2,3,5,9,8,12)$$\zeta_{12}^{2}$
$1$$12$$(1,5,4,3,10,2,11,12,6,8,7,9)$$\zeta_{12}^{3} - \zeta_{12}$
$1$$12$$(1,2,7,3,6,5,11,9,10,8,4,12)$$\zeta_{12}$
$1$$12$$(1,12,4,8,10,9,11,5,6,3,7,2)$$-\zeta_{12}^{3} + \zeta_{12}$
$1$$12$$(1,9,7,8,6,12,11,2,10,3,4,5)$$-\zeta_{12}$
The blue line marks the conjugacy class containing complex conjugation.