Properties

Label 1.5_29.4t1.2c2
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 29 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$145= 5 \cdot 29 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 54 x^{2} + 9 x + 81 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even
Corresponding Dirichlet character: \(\chi_{145}(12,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 18\cdot 37 + 6\cdot 37^{2} + 13\cdot 37^{3} + 11\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 33\cdot 37 + 15\cdot 37^{2} + 22\cdot 37^{3} + 25\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 32\cdot 37 + 31\cdot 37^{2} + 28\cdot 37^{3} + 5\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 + 27\cdot 37 + 19\cdot 37^{2} + 9\cdot 37^{3} + 31\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,4)$$-1$
$1$$4$$(1,4,2,3)$$-\zeta_{4}$
$1$$4$$(1,3,2,4)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.