Properties

Label 1.5_263_1871.2t1.1c1
Dimension 1
Group $C_2$
Conductor $ 5 \cdot 263 \cdot 1871 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_2$
Conductor:$2460365= 5 \cdot 263 \cdot 1871 $
Artin number field: Splitting field of $f= x^{2} - x - 615091 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2$
Parity: Even
Corresponding Dirichlet character: \(\displaystyle\left(\frac{2460365}{\bullet}\right)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 4\cdot 19 + 19^{2} + 12\cdot 19^{3} + 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 14\cdot 19 + 17\cdot 19^{2} + 6\cdot 19^{3} + 17\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $

Cycle notation
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 } $ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)$$-1$
The blue line marks the conjugacy class containing complex conjugation.