Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ |
$=$ |
$ 4 + 13\cdot 43^{2} + 42\cdot 43^{3} + 39\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
$r_{ 2 }$ |
$=$ |
$ 13 + 14\cdot 43 + 22\cdot 43^{2} + 22\cdot 43^{3} + 13\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
$r_{ 3 }$ |
$=$ |
$ 23 + 29\cdot 43 + 41\cdot 43^{2} + 41\cdot 43^{3} + 43^{4} +O\left(43^{ 5 }\right)$ |
$r_{ 4 }$ |
$=$ |
$ 24 + 32\cdot 43 + 21\cdot 43^{2} + 43^{3} + 29\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
$r_{ 5 }$ |
$=$ |
$ 36 + 27\cdot 43 + 21\cdot 43^{2} + 11\cdot 43^{3} + 16\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
$r_{ 6 }$ |
$=$ |
$ 37 + 31\cdot 43 + 3\cdot 43^{2} + 33\cdot 43^{3} + 3\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
$r_{ 7 }$ |
$=$ |
$ 39 + 40\cdot 43 + 35\cdot 43^{2} + 43^{3} + 8\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
$r_{ 8 }$ |
$=$ |
$ 40 + 37\cdot 43 + 11\cdot 43^{2} + 17\cdot 43^{3} + 16\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
Cycle notation |
$(1,5,8,3,7,2,6,4)$ |
$(1,7)(2,5)(3,4)(6,8)$ |
$(1,6,7,8)(2,3,5,4)$ |
Character values on conjugacy classes
Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
$1$ | $1$ | $()$ | $1$ |
$1$ | $2$ | $(1,7)(2,5)(3,4)(6,8)$ | $-1$ |
$1$ | $4$ | $(1,8,7,6)(2,4,5,3)$ | $-\zeta_{8}^{2}$ |
$1$ | $4$ | $(1,6,7,8)(2,3,5,4)$ | $\zeta_{8}^{2}$ |
$1$ | $8$ | $(1,5,8,3,7,2,6,4)$ | $-\zeta_{8}^{3}$ |
$1$ | $8$ | $(1,3,6,5,7,4,8,2)$ | $-\zeta_{8}$ |
$1$ | $8$ | $(1,2,8,4,7,5,6,3)$ | $\zeta_{8}^{3}$ |
$1$ | $8$ | $(1,4,6,2,7,3,8,5)$ | $\zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.