Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 11 + 75\cdot 79 + 67\cdot 79^{2} + 47\cdot 79^{3} + 66\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 19 + 48\cdot 79 + 66\cdot 79^{2} + 63\cdot 79^{3} + 20\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 63 + 7\cdot 79 + 48\cdot 79^{2} + 29\cdot 79^{3} + 55\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 66 + 26\cdot 79 + 54\cdot 79^{2} + 16\cdot 79^{3} + 15\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,4,2,3)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $1$ | $4$ | $(1,4,2,3)$ | $\zeta_{4}$ |
| $1$ | $4$ | $(1,3,2,4)$ | $-\zeta_{4}$ |
The blue line marks the conjugacy class containing complex conjugation.