Properties

Label 1.5_151.4t1.1c2
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 151 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$755= 5 \cdot 151 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 189 x^{2} + 189 x + 7031 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even
Corresponding Dirichlet character: \(\chi_{755}(452,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 18\cdot 31 + 30\cdot 31^{2} + 27\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 19\cdot 31 + 12\cdot 31^{2} + 3\cdot 31^{3} + 7\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 11\cdot 31 + 27\cdot 31^{2} + 20\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 12\cdot 31 + 22\cdot 31^{2} + 9\cdot 31^{3} + 9\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,4)$$-1$
$1$$4$$(1,3,2,4)$$-\zeta_{4}$
$1$$4$$(1,4,2,3)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.