Properties

Label 1.5_13.4t1.2
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 13 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$65= 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 24 x^{2} + 4 x + 16 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 42\cdot 61 + 60\cdot 61^{2} + 58\cdot 61^{3} + 30\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 11\cdot 61 + 33\cdot 61^{2} + 35\cdot 61^{3} + 11\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 45 + 61 + 11\cdot 61^{2} + 34\cdot 61^{3} + 38\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 + 5\cdot 61 + 17\cdot 61^{2} + 54\cdot 61^{3} + 40\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$1$ $4$ $(1,3,2,4)$ $\zeta_{4}$ $-\zeta_{4}$
$1$ $4$ $(1,4,2,3)$ $-\zeta_{4}$ $\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.