Properties

Label 1.5_11_43.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 5 \cdot 11 \cdot 43 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$2365= 5 \cdot 11 \cdot 43 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 13 x^{4} + 17 x^{3} + 762 x^{2} - 1672 x + 11264 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{2365}(2199,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 16 + \left(33 a + 15\right)\cdot 41 + \left(14 a + 29\right)\cdot 41^{2} + \left(21 a + 23\right)\cdot 41^{3} + \left(11 a + 40\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 24 + \left(33 a + 37\right)\cdot 41 + \left(14 a + 27\right)\cdot 41^{2} + \left(21 a + 12\right)\cdot 41^{3} + \left(11 a + 3\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 33 + \left(7 a + 29\right)\cdot 41 + \left(26 a + 39\right)\cdot 41^{2} + \left(19 a + 20\right)\cdot 41^{3} + \left(29 a + 31\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 35 + \left(7 a + 13\right)\cdot 41 + \left(26 a + 40\right)\cdot 41^{2} + \left(19 a + 31\right)\cdot 41^{3} + \left(29 a + 12\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 2 + \left(7 a + 36\right)\cdot 41 + \left(26 a + 38\right)\cdot 41^{2} + \left(19 a + 20\right)\cdot 41^{3} + \left(29 a + 16\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 14 + \left(33 a + 31\right)\cdot 41 + \left(14 a + 28\right)\cdot 41^{2} + \left(21 a + 12\right)\cdot 41^{3} + \left(11 a + 18\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,6,2)(3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,6,2)(3,5,4)$$\zeta_{3}$
$1$$3$$(1,2,6)(3,4,5)$$-\zeta_{3} - 1$
$1$$6$$(1,3,2,4,6,5)$$-\zeta_{3}$
$1$$6$$(1,5,6,4,2,3)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.