Properties

Label 1.5_11_41.4t1.2c1
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 11 \cdot 41 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$2255= 5 \cdot 11 \cdot 41 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 564 x^{2} + 564 x + 63281 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even
Corresponding Dirichlet character: \(\chi_{2255}(1352,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 26 + 4\cdot 89 + 20\cdot 89^{2} + 33\cdot 89^{3} + 72\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 42 + 56\cdot 89 + 63\cdot 89^{2} + 61\cdot 89^{3} + 67\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 54 + 70\cdot 89 + 41\cdot 89^{2} + 39\cdot 89^{3} + 13\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 + 46\cdot 89 + 52\cdot 89^{2} + 43\cdot 89^{3} + 24\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4,3,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)$$-1$
$1$$4$$(1,4,3,2)$$\zeta_{4}$
$1$$4$$(1,2,3,4)$$-\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.