Properties

Label 1.5_11.4t1.1
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 11 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$55= 5 \cdot 11 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 14 x^{2} + 14 x + 31 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 11\cdot 19 + 4\cdot 19^{2} + 10\cdot 19^{3} + 8\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 5\cdot 19 + 4\cdot 19^{2} + 13\cdot 19^{3} + 2\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 2\cdot 19 + 16\cdot 19^{2} + 14\cdot 19^{3} + 4\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 + 18\cdot 19 + 12\cdot 19^{2} + 18\cdot 19^{3} + 2\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4,2,3)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,2)(3,4)$ $-1$ $-1$
$1$ $4$ $(1,4,2,3)$ $\zeta_{4}$ $-\zeta_{4}$
$1$ $4$ $(1,3,2,4)$ $-\zeta_{4}$ $\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.