Properties

Label 1.5_101.4t1.3
Dimension 1
Group $C_4$
Conductor $ 5 \cdot 101 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$505= 5 \cdot 101 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 126 x^{2} - 126 x + 3251 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 26\cdot 29 + 22\cdot 29^{2} + 2\cdot 29^{3} + 25\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 22\cdot 29 + 3\cdot 29^{2} + 14\cdot 29^{3} + 11\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 + 14\cdot 29 + 20\cdot 29^{2} + 15\cdot 29^{3} + 2\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 + 23\cdot 29 + 10\cdot 29^{2} + 25\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3,4,2)$
$(1,4)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,3)$ $-1$ $-1$
$1$ $4$ $(1,3,4,2)$ $\zeta_{4}$ $-\zeta_{4}$
$1$ $4$ $(1,2,4,3)$ $-\zeta_{4}$ $\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.