Properties

Label 1.571.5t1.1c2
Dimension 1
Group $C_5$
Conductor $ 571 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$571 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 228 x^{3} - 868 x^{2} + 3056 x + 7552 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{571}(387,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 9\cdot 29 + 14\cdot 29^{2} + 16\cdot 29^{3} + 16\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 3\cdot 29 + 18\cdot 29^{2} + 10\cdot 29^{3} + 20\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 29 + 24\cdot 29^{2} + 9\cdot 29^{3} + 21\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 + 8\cdot 29 + 4\cdot 29^{2} + 12\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 + 5\cdot 29 + 26\cdot 29^{2} + 20\cdot 29^{3} + 16\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3,5,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,3,5,2,4)$$\zeta_{5}^{2}$
$1$$5$$(1,5,4,3,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,2,3,4,5)$$\zeta_{5}$
$1$$5$$(1,4,2,5,3)$$\zeta_{5}^{3}$
The blue line marks the conjugacy class containing complex conjugation.