Properties

Label 1.532.6t1.f
Dimension $1$
Group $C_6$
Conductor $532$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:\(532\)\(\medspace = 2^{2} \cdot 7 \cdot 19 \)
Artin number field: Galois closure of 6.0.2663410937152.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Projective image: $C_1$
Projective field: \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \(x^{2} + 21 x + 5\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 3 a + 20 + \left(9 a + 3\right)\cdot 23 + \left(a + 3\right)\cdot 23^{2} + \left(22 a + 13\right)\cdot 23^{3} + \left(17 a + 4\right)\cdot 23^{4} + \left(6 a + 2\right)\cdot 23^{5} +O(23^{6})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 15 a + 8 + \left(7 a + 11\right)\cdot 23 + \left(a + 2\right)\cdot 23^{2} + \left(2 a + 10\right)\cdot 23^{3} + \left(21 a + 14\right)\cdot 23^{4} + \left(2 a + 7\right)\cdot 23^{5} +O(23^{6})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 14 a + 9 + \left(20 a + 9\right)\cdot 23 + \left(2 a + 7\right)\cdot 23^{2} + \left(14 a + 10\right)\cdot 23^{3} + \left(10 a + 19\right)\cdot 23^{4} + \left(20 a + 7\right)\cdot 23^{5} +O(23^{6})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 20 a + 3 + \left(13 a + 19\right)\cdot 23 + \left(21 a + 19\right)\cdot 23^{2} + 9\cdot 23^{3} + \left(5 a + 18\right)\cdot 23^{4} + \left(16 a + 20\right)\cdot 23^{5} +O(23^{6})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 8 a + 15 + \left(15 a + 11\right)\cdot 23 + \left(21 a + 20\right)\cdot 23^{2} + \left(20 a + 12\right)\cdot 23^{3} + \left(a + 8\right)\cdot 23^{4} + \left(20 a + 15\right)\cdot 23^{5} +O(23^{6})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 9 a + 14 + \left(2 a + 13\right)\cdot 23 + \left(20 a + 15\right)\cdot 23^{2} + \left(8 a + 12\right)\cdot 23^{3} + \left(12 a + 3\right)\cdot 23^{4} + \left(2 a + 15\right)\cdot 23^{5} +O(23^{6})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,6,4,2,3)$
$(1,4)(2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-1$ $-1$
$1$ $3$ $(1,6,2)(3,5,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,2,6)(3,4,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,5,6,4,2,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,3,2,4,6,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.